1. For the op-amp circuit below, derive V_o for $R_F = \infty \Omega$ (open), $V_c(0) = 0V$ (capacitor initially uncharged). Sketch V_o for $V_i = a$ square wave which varies between $+10V$ and $-10V$ at a $f = 1KHz$. Be certain to label, with numerical values, peak voltage and period.

2. For the op-amp circuit above, $V_i = \sqrt{2} \sin (\omega t)$ Volts and $R_F = 10K\Omega$. Derive the closed-loop gain (V_o / V_i). In addition, determine the magnitude of V_o in V_{RMS} at the following frequencies: 0, 20, 40, 70, 100, 200, 300, 400, 700 1K and 2K Hz. Also, calculate cut-off frequency in Hertz.
3. The circuit shown is a comparator op-amp circuit used as a continuity tester.
 Note: +V = 9V and –V = 0V
 The test resistance is connected between nodes X and Y.
 Prove $V_o = 9V$ (LED does not light) when there’s an open between X, Y.
 Also, prove $V_o = 0V$ (LED does light) when there’s a short between X, Y.

Note: Replace 2KΩ resistor with 2.2KΩ
Objective
Examine the characteristics and limitations of op-amps and to observe the operation of common op-amp circuits.

Workbench Equipment

- Digital Oscilloscope, Agilent 54621A
- Function Generator, Agilent 33120A
- Digital Multimeter, Agilent 34401A
- DC Power Supply, Agilent E3640A
- Dual-tracking DC Power Supply, TPS-4000

Check-out Equipment, 20-111 window

- Large Breadboard
- Scope Probe (10:1), 2
- Banana to grabber 4 pair, 4red / 4black
- BNC to grabber lead
- Banana to Banana lead, 3

Background

General Closed-Loop Gain Equation for Integrator / Low-Pass Filter

\[\frac{V_i - V_A}{R_1} = \frac{V_A - V_o}{R_F} + j(V_A - V_o)\omega C_F \] \hspace{1cm} (5-2)

\[\text{KCL at node A of Figure 5-1: } i_{R1} = i_{RF} + i_{CF} \] \hspace{1cm} (5-1)

\[V_A = 0\text{V since non-inverting input grounded and voltage across op-amp inputs equal zero.} \]
\[
\frac{V_i}{R_1} = -\frac{V_o}{R_f} - j(V_o)\omega C_F
\]
(5-3)

General Closed-Loop Gain:
\[
\frac{V_o}{V_i} = -\frac{\frac{R_f}{R_1}}{1 + j\omega R_F C_F}
\]
(5-4)

When \(\omega = 0\) (DC input):
\[
\frac{V_o}{V_i} = -\frac{R_f}{R_1}
\]
(5-5)

Equation 5-5 is the closed-loop gain of an inverting amplifier since capacitor acts like an open to DC current.

Magnitude of equation 5-4:
\[
\left| \frac{V_o}{V_i} \right| = \frac{R_f}{R_1} \frac{1}{\sqrt{1 + (\omega R_F C_F)^2}}
\]
(5-6)

Writing equation 5-4 as:
\[
\frac{V_o}{V_i} = -\frac{1}{\frac{R_1}{R_f} + j\omega C_F}
\]
(5-7)

If \(R_F\) is large, equation 5-7 reduces to:
\[
\frac{V_o}{V_i} = -\frac{1}{j\omega C_F}
\]
(5-8)

Using Laplace transform:
\[
V_o = -\frac{1}{R_1 C_F} \int V_i dt
\]
(5-9)

Equation 5-9 shows when \(R_F\) is large, ideally infinite, op-amp circuit is an integrator. In a practical integrator, \(R_F\) is a high resistance (for example 1 Meg \(\Omega\) as used in this experiment). This feedback resistor is necessary to prevent output from saturating due to large DC gain.

Cut-off frequency, \(\omega_{co}\), is the frequency where magnitude of
\[
\frac{V_o}{V_i} = \frac{R_f}{\sqrt{2}}
\]
(5-10)

As can be seen from equation 5-6:
\[
\omega_{co} = \frac{1}{R_F C_F}
\]
(5-11)

Comparator
An op-amp without feedback can be used as a comparator. A comparator outputs one of two possible voltages dependant on the comparison of two input voltages.
Figure 5-2 is an example of a comparator.

The output voltage of an ideal comparator equals either the positive rail voltage or the negative rail voltage. Which rail voltage the output equals depends on the input voltages (V_i and V_R in Figure 5-2). If the non-inverting input voltage (V_i) is $>$ the inverting input voltage (V_R), then V_o equals the positive supply voltage (+12V). If the inverting input voltage (V_R) is $>$ the non-inverting input voltage (V_i), then V_o equals the negative supply voltage (-12V).

Procedure 1: Integrator (prelab #1 circuit with $R_F = 1$MegΩ)
- Measure C_F on an impedance bridge.

 $$C_F = \text{______________ Farads}$$

- Measure both resistors with ohmmeter.

 $$R_F = \text{______________} \Omega \quad R_1 = \text{______________} \Omega$$

- Build the circuit of prelab #1.
- Use a function generator (Hi Z mode) to apply a square wave 10Vpp 500Hz at V_i.
- Observe V_o on scope, carefully measure V_{pp} of output with cursors and capture both V_o and V_i.

 o V_{pp} measurement of V_o is important for a postlab question.

Procedure 2: Low-Pass Filter (prelab #1 circuit with $R_F = 10K\Omega$)
- Measure 10KΩ.

 $$R_F = \text{______________} \Omega$$

- Remove square wave input and replace R_F with a 10KΩ resistor.
- Calculate and record the magnitude of V_o/V_i for each frequency listed in Table 5-1.

 o Use measured values for calculated magnitude of V_o/V_i.
- Apply a 1V RMS 20Hz sinusoid at V_i then measure and record V_o in RMS volts.

 o Use an AC voltmeter to measure V_o, an AC voltmeter displays RMS volts.
- Keep V_i at 1V RMS and change only frequency to each of the values listed in Table 5-1, record V_o.
- Plot magnitude of $\frac{V_o}{V_i}$ versus frequency for both experimental and calculated using Excel.

 o Plot both curves on one graph.
- Find cut-off frequency in Hertz from plot & compare to calculated f_{co}.

 o Use measured values to calculate f_{co}.

36
f_{co} plot = ___________ \hspace{2cm} f_{co} \text{ calc} = ___________ \hspace{2cm} \%\text{Error} = ___________

f (Hz)	V_{\text{rms}} \text{ (V)}	\text{Experimental} \hspace{2cm} V_{o}/V_{i} \hspace{2cm} \text{Calculated} \hspace{2cm} V_{o}/V_{i}		
20	____________	____________	____________	____________
40	____________	____________	____________	____________
70	____________	____________	____________	____________
100	____________	____________	____________	____________
200	____________	____________	____________	____________
300	____________	____________	____________	____________
400	____________	____________	____________	____________
700	____________	____________	____________	____________
1000	____________	____________	____________	____________
2000	____________	____________	____________	____________

Table 5-1 Low-Pass Filter Plot Data

Procedure 3: Comparator Application – Continuity Tester

- Build the comparator (continuity tester) circuit of prelab #3.
 - **NOTE:** Use op-amp LM311 not LM741.
- Connect a wire between nodes X and Y, does the LED light?
- Does the LED light if there is an open between nodes X and Y?
- Obtain instructor verification of proper circuit operation.

Instructor Initials: __________

Discussion

1. Use equation 5-9 to calculate the peak-to-peak output voltage of the integrator circuit. How does it compare (%error) with the experimental output Vpp?
2. How well do the experimental and theoretical values in Table 5-1 compare? What are the significant causes of discrepancies?