1. Determine V and I for the circuit shown below. Also, determine V and I when a short is connected between terminals a-b. All resistances are in ohms Ω.

2. For the following circuits, determine R_{TH} by finding the equivalent resistance “seen” by the load at terminals a-b. All resistances are in ohms Ω.

Circuit a

Circuit b

Circuit c
3. Determine the Thevenin equivalent circuit (both V_{TH} and R_{TH}) at terminals a-b. For the Thevenin resistance R_{TH}, find the equivalent resistance “seen” by the load. All resistances are in ohms Ω.

![Diagram of electrical circuit]

4. For the circuit of Problem 3, determine the Norton equivalent circuit (both I_N and R_N) at terminals a-b by connecting a short between terminals a-b and solving for $I_{SC} = I_N$.

5. The Thevenin resistance R_{TH} can also be calculated using Ohm’s law equation below. Use the calculated values of V_{TH} and I_{SC} from Problems 3 and 4 to determine R_{TH}. Does R_{TH} equal the R_{EQ} value “seen” by the load?

$$R_{TH} = \frac{V_{TH}}{I_{SC}}$$
6. Given the following circuit: All resistances are in ohms Ω.
 a. What R_L value will provide maximum power transfer to the load?
 b. Calculate the power in Watts delivered to the load for the value of R_L of part a.
 c. It is desired to provide maximum power transfer to a 10Ω load resistance (R_L). If a resistor (R_4) is placed in parallel with R_2, what is the required R_4 value?
Objective

To demonstrate that complex circuits can be simplified using Thevenin and Norton equivalent circuit techniques. To experimentally confirm Maximum Power Transfer Theorem applied to resistive circuits (i.e., maximum power delivered to load when $R_L = R_{TH}$).

Workbench Equipment

- DC Power Supply, Agilent E3640A
- Digital Multimeter, Agilent 34401A
- Resistor Box II, 10Ω/25Ω/40Ω/130Ω/269Ω/562Ω
- Resistor Decade Box, 1Ω and 10Ω step

Check-out Equipment, 20-111 window

- Banana to banana, 3 pairs, red/black
- Short leads, quantity 6, 1 bag

Background

For many relatively complex electrical circuits, it is often necessary to determine the current through and voltage across a load resistor as a function of load resistance. To simplify these calculations, it is useful to reduce the original circuit to either a Thevenin or Norton equivalent circuit.

Thevenin Equivalent

For many electrical circuits, only the external terminals are accessible. Internal circuitry is sealed inside a “black box,” see Fig. 4-1a.

According to Thevenin’s Theorem, it is possible to replace this box with a voltage source V_{TH} and a series resistance R_{TH} between terminals a-b. Thevenin voltage V_{TH} can be determined by measuring or calculating the open-circuit voltage V_{oc} across terminals a-b. V_{oc} is the voltage across terminals a-b with R_L removed creating an open-circuit. Short-circuit current I_{SC} is determined by measuring or calculating the current through a short-circuit connected across terminals a-b. Short-circuit current is by definition equal to the Norton current I_N. In addition, R_{TH} and R_N are identical.

Thevenin resistance R_{TH} (and therefore R_N) can be calculated using Ohm’s Law:
For the circuit of Fig. 4-1b, when load resistance R_L is connected across terminals a-b:

\[
V_{TH} = IR_{TH} + IR_L
\] \hfill (4-2)

\[
I = \frac{V_{TH}}{R_{TH} + R_L}
\] \hfill (4-3)

where I is the current through both the Thevenin and load resistors. For transparent black boxes (internal circuitry is visible), circuit simplification methods may be used to determine V_{TH} and R_{TH}. Simplification methods, such as, KVL, KCL, R_{EQ} - equivalent resistance “seen” by the load, Ohm’s Law and superposition method.

Norton Equivalent

Norton’s equivalent is another method used to simplify complex circuits. Fig. 4-1c shows a circuit equivalent to Fig. 4-1a represented by Norton current source I_N in parallel with Norton resistance R_N. The Norton current can be determined by Equation 4-1 above.

Maximum Power Transfer

Maximum power transfer is an important concept in the development of many electrical circuits including home stereo speakers and computer interfaces. The concept is used to maximize power transfer to the load in these circuits. Thevenin or Norton techniques are applied to complex circuits to identify the optimum load resistance value ($R_L = R_{TH}$). The power transferred from the source to the load in a Thevenin equivalent circuit (Fig. 4-2) is given by:

\[
P_L = I^2R_L = V_{TH}^2 \frac{R_L}{(R_{TH} + R_L)^2}
\] \hfill (4-4)

To find the value of R_L that yields a maximum P_L:

\[
\frac{dP_L}{dR_L} = 0
\] \hfill (4-5)

\[
\frac{dP_L}{dR_L} = V_{TH}^2 \frac{(R_{TH} + R_L)^2 - 2R_L(R_{TH} + R_L)}{(R_{TH} + R_L)^3} = V_{TH}^2 \frac{R_L^2 - R_{TH}^2}{(R_{TH} + R_L)^3}
\] \hfill (4-6)

Thus, maximum power transfer occurs when $R_L = R_{TH}$.

![Fig. 4-2 Thevenin Equivalent Circuit](image)
Procedure 1: Thevenin Equivalent

- Measure all resistors used to construct the circuit of Fig. 4-3 and record in Table 4-1a.
- Construct the circuit of Fig. 4-3.
- Disconnect source leads at source terminals and then connect source leads together (“eliminates” source). Measure the open circuit resistance across terminals a-b.
 - This yields the Thevenin equivalent resistance R_{TH}. Record in Table 4-1a.
- Calculate the expected R_{TH} value and record in Table 4-1a. Also calculate percent error.

![Fig. 4-3 Circuit Used to Determine Thevenin Equivalent](image)

<table>
<thead>
<tr>
<th>Resistances</th>
<th>R_1 (130Ω)</th>
<th>R_2 (40Ω)</th>
<th>R_3 (25Ω)</th>
<th>R_4 (10Ω)</th>
<th>$R_{TH} = R_{ab}$ (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measured (Ω)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calculated R_{TH} (Ω)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Percent Error R_{TH} =</td>
</tr>
</tbody>
</table>

Table 4-1a Thevenin Equivalent Resistance Measurements

- Set the Agilent E3640A power supply to 10V with a 0.5A current limit.
- Connect the power supply to the circuit and measure the open-circuit voltage across the a-b terminals. Record the result in Table 4-1b.
- Calculate expected V_{TH} and enter in Table 4-1b. Also calculate percent error.

<table>
<thead>
<tr>
<th>Measured V_{TH} (V)</th>
<th>Calculated V_{TH} (V)</th>
<th>Percent Error (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4-1b Thevenin Voltage Measurements and Calculations

Procedure 2: Norton Equivalent

- Measure the short-circuit current at the a-b terminals by replacing R_L with an ammeter.
 (Agilent 34401A set to measure DC current). Recall ideal internal ammeter resistance = 0Ω.
 - Note: ammeter inputs red I and black LO must be used (located lower far right).
- Calculate expected I_{SC} and enter in Table 4-2, along with percent error.

<table>
<thead>
<tr>
<th>Measured I_N (A)</th>
<th>Calculated I_N (A)</th>
<th>Percent Error (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4-2 Norton Current Measurements and Calculations
Procedure 3: Thevenin Equivalent Circuit Measurements

- Using measured V_{TH} and R_{TH} values from Procedure 1, construct the circuit of Fig. 4-1b.
 - Use the circuit of Fig. 4-3 for R_{TH}. Replace 10V source with a short. **Disconnect source, do not short power supply!** Resistance between nodes a and b = R_{TH}.
 - Make certain to adjust source voltage to V_{TH}, do not leave at 10V.
- Adjust R_L (1Ω step decade box) as close as possible to $R_{TH}/2$ and record both nominal (desired) and measured (actual) resistances in Table 4-3.
- Connect the resistance to the a-b terminals. Measure the voltage V_{ab} and record in Table 4-3.
- Repeat above two steps for load resistance values of R_{TH} and $2R_{TH}$.
- Calculate the expected values for V_{ab} for the three R_L values and record in Table 4-3 along with percent error.

<table>
<thead>
<tr>
<th>Nominal R_L (Ω)</th>
<th>Measured R_L (Ω)</th>
<th>Measured V_{ab} (V)</th>
<th>Calculated V_{ab} (V)</th>
<th>Percent Error (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R_{TH}/2$ =</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R_{TH} =</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$2R_{TH}$ =</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4-3 Thevenin Equivalent Circuit Measurements and Calculations

Procedure 4: Maximum Power Transfer

- Continue to use the circuit setup of procedure 3.
- Fill in Table 4-4 with Nominal R_L, Measured R_L and Measured V_{ab} for $R_{TH}/2$, R_{TH} and $2R_{TH}$ from Table 4-3.
- Measure the voltage across the a-b terminals for eight additional R_L values.
 - Make four of these additional measurements between $R_{TH}/2$ and R_{TH} with one measurement an ohm less than $R_L = R_{TH}$ and the other three measurements approximately evenly spaced between $R_{TH}/2$ and $R_{TH} - 1Ω$.
 - Make four of these additional measurements between $R_{TH}/2$ and $2R_{TH}$ with one measurement an ohm more than $R_L = R_{TH}$ and the other three measurements approximately evenly spaced between $R_{TH} + 1Ω$ and $2R_{TH}$.
- For each additional R_L value, record the nominal and measured R_L values, and measured V_{ab} in Table 4-4.
- Use the measured values of both R_L and V_{ab} to calculate the power delivered to the load
 $$P_L = \frac{V_{ab}^2}{R_L}.$$ Record all values in Table 4-4.
- Using Excel, plot the load power P_L as a function of R_L / R_{TH}.

Procedure 5: Power Supply Internal Resistance

- Set the Agilent E3640A power supply to 0.5V with a 0.5A current limit.
- Measure the resistance of two leads to be used to connect the power supply to a decade box. Record in Table 4-5.
- Measure the resistance of a 1Ω step decade box set at 1Ω, 2Ω and 3Ω; record in Table 4-5.
- Connect decade box to the power supply terminals.
- With decade box set to 1Ω, record power supply current. Note: Record the power supply current display value, do not measure with ammeter.
- Measure and record the voltage across the decade box. Record as V_{RL} in Table 4-5.
- Repeat previous two steps for decade resistance settings of 2Ω and 3Ω.
- Determine the power supply’s internal resistance for each measurement. Use the measured V_{RL} in your calculation and be sure to account for cable resistance. Record all calculated values in Table 4-5.

<table>
<thead>
<tr>
<th>Nominal R_L (Ω)</th>
<th>Measured R_L (Ω)</th>
<th>Measured V_{RL} (V)</th>
<th>Measured I_S (A)</th>
<th>Calculated R_{int} (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R_{TH}/2$ =</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R_{TH} =</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$2R_{TH}$ =</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4-4 Load Power as a Function of Load Resistance

<table>
<thead>
<tr>
<th>Nominal R_L (Ω)</th>
<th>Measured R_L (Ω)</th>
<th>Measured V_{RL} (V)</th>
<th>Measured I_S (A)</th>
<th>Calculated R_{int} (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$R_{lead} = \Omega \quad R_{lead} = \Omega$

Table 4-5 Power Supply Internal Resistance Measurements and Calculations
Discussion

1. Determine the equivalent resistance “seen” by the voltage source of Fig. 4-3 with \(R_L \) disconnected (use nominal R values). Is this resistance the same as the resistance “seen” by the load with \(R_L \) disconnected? If not, why different?

2. Use measured \(I_N \) from Table 4-2 and measured \(R_L = R_{TH} \) value from Table 4-4 and calculate maximum power transfer to the load using a Norton equivalent circuit analysis. How does answer above compare to corresponding \(P_L \) in Table 4-4?

3. What is the main advantage of Thevenin and Norton equivalent circuits?

4. Comment on the \(P_L \) vs. \(R_L / R_{TH} \) plot of Procedure 4. Is the curve as expected? Why or why not?

5. Compare cable resistance to the power supply’s internal resistance. Calculate percent error introduced by the cable resistance. In other words, calculate the percent error introduced if the cable resistances were not accounted for (i.e., the cables were considered to be ideal).

6. In procedure 5, why is it necessary to measure voltage across the decade box? Why not use the power supply display voltage?